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Abstract
Picosecond Raman spectroscopy has been used to study non-equilibrium
electron distributions and energy loss rate in a metal–organic-chemical-vapour-
deposition-grown Inx Ga1−x As1−yNy (x = 0.03 and y = 0.01) epilayer grown
on GaAs substrate. It is demonstrated that for the photoexcited electron–
hole pair density of n ∼= 1018 cm−3 electron distributions can be described
very well by Fermi–Dirac distributions with effective electron temperatures
substantially higher than the lattice temperature. From the measurement of
electron temperature as a function of the pulse width of the excitation laser, the
energy loss rate in Inx Ga1−x As1−yNy is estimated to be about 64 meV ps−1.
These experimental results are compared with those of GaAs and important
implications are given.

1. Introduction

Recently, the successful fabrication of operational InGaAsN/GaAs laser diodes by using gas-
source molecular beam epitaxy (GSMBE) [1–3], chemical beam epitaxy (CBE) [4] and metal–
organic chemical vapour deposition (MOCVD) [5, 6] techniques has attracted a lot of attention.
The quaternary InGaAsN alloy system, because of its ability to remain lattice matched to
other semiconductors such as GaAs, Ge and InP [7], has been predicted to have superior
temperature characteristics compared to the InGaAsP alloy system. InGaAsN alloys have also
been predicted to have great potential for multi-bandgap solar cells [8, 9]. It was found that
the minority-carrier diffusion length increases substantially after post-growth annealing in a
nitrogen ambient, and as a result the quantum efficiency in such solar cells can be as high as 70%.
More recently, Mair et al [10] have reported the results of time-resolved photoluminescence
spectroscopy studies of an InGaAsN epilayer. These authors concluded that the localized
states in InGaAsN, which arose from alloy fluctuations, played an important role in the decay
of the photoluminescence intensity. Paramount knowledge of carrier dynamics is essential
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Figure 1. The experimental set-up for transient (single-pulse) picosecond Raman scattering studies
of electron transient transport in semiconductors. SHG, second-harmonic generation system; M,
mirror; L, lens; PMT, photomultiplier tube. For transient experiments, the same laser pulse is used
for both excitation of electron–hole pairs and detection of their transport properties.

for design engineers to devise an efficient semiconductor device. In this paper, we report
our results on carrier dynamics of an InGaAsN epilayer grown on GaAs substrate by using
single-pulse Raman spectroscopy on a picosecond timescale.

2. Sample and experimental technique

The InGaAsN epilayer studied in this work was grown by MOCVD on a semi-insulating GaAs
substrate and terminated with a 5 nm thick GaAs cap. The nominal In and N molar fractions
were 0.03 and 0.01, respectively. The In/N incorporation ratio of three has been shown to
provide a lattice match to GaAs. As grown, the undoped InGaAsN film was p type. After
growth, the sample was annealed at 600 ◦C for 30 min in a nitrogen ambient in order to improve
the electrical as well as optical properties of the material.

The excitation source was a double-jet DCM dye laser [11] synchronously pumped by
the second-harmonic output of a continuous wave (cw) mode-locked yttrium–aluminium–
garnet (YAlG) laser operating at a repetition rate of 76 MHz, which is shown in figure 1.
The photon energy was chosen to be h̄ωi = 1.931 eV. The pulse width of the dye laser can
be tuned almost continuously from 1 to 5 ps by changing the concentration of the saturable
absorber and the birefringence filter. Single-particle scattering (SPS) spectra were taken in
the Z(X, Y )Z̄ scattering geometry so that only the SPS spectra associated with spin-density
fluctuations (SDFs) were measured [12, 13]. Here, X = (100), Y = (010) and Z = (001).
The photoexcited electron–hole pair density was estimated to be n ∼= 1 × 1018 cm−3 by fitting
the luminescence spectrum of the E0 bandgap of InGaAsN [14]. The backward-scattered
Raman signal was collected and analysed by a standard Raman system consisting of a double
spectrometer and a low-background-count photomultiplier. All of the SPS spectra presented
here were taken at T = 300 K.

2.1. Raman spectroscopy in semiconductors

We first present a brief theory of Raman scattering from carriers in semiconductors, which
will be particularly useful for situations where electron distributions are non-equilibrium such
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Figure 2. A simple model—Compton scattering, demonstrating how the electron distribution in
semiconductors can be directly probed by Raman spectroscopy.

as in our current situation; and then we discuss on the theory of Raman scattering by lattice
vibrations in semiconductors.

2.1.1. Theory of Raman scattering from carriers in semiconductors.

(a) A simple model. In order to understand how Raman spectroscopy can be used to probe the
electron distribution function in semiconductors, we start with the simplest physical concept—
Compton scattering. As shown in figure 2, let us consider that an incident photon with
wavevector �ki and angular frequency ωi is interacting with an electron of mass m∗

e travelling at
a velocity �V . After the scattering event, the scattered photon is characterized by wavevector
�ks and angular frequency ωs. The scattered electron is then moving at a velocity �V ′. From the
conservation of energy and momentum, we can write down the following equations:

h̄ωi + 1
2 m∗

e
�V 2 = h̄ωs + 1

2 m∗
e
�V ′2 (1)

h̄�ki + m∗
e
�V = h̄�ks + m∗

e
�V ′. (2)

If we define the energy transfer and the wavevector transfer of the photon to be ω ≡ ωi − ωs,
and �q ≡ �ki − �ks respectively, then from equations (1) and (2) we have

ω = �V · �q +
h̄ �q2

2m∗
e

. (3)

This important equation states that the energy transfer of the incident photon is (apart from
a constant term, h̄ �q2

2m∗
e
) directly proportional to the electron velocity along the direction of

wavevector transfer. In other words, it implies that Raman scattering intensity, measured at an
angular frequency ω, is proportional to the number of electrons that have a velocity component
along the direction of wavevector transfer given by equation (3), irrespective of their velocity
components perpendicular to �q.

Therefore, if the electron distribution function is Maxwell–Boltzmann-like, then the
lineshape of the Raman scattering spectrum will be Gaussian-like, centred around ω ∼= 0,
whereas a drifted Maxwell–Boltzmann distribution with an electron drift velocity �Vd will
result in a Raman scattering spectrum which is a shifted Gaussian centred around ω ∼= �q · �Vd.

However, we note that, strictly speaking, this simple picture is only correct for a system of
a non-interacting electron gas in vacuum. For an electron gas in a semiconductor such as GaAs
or GaN, many-body effects and the effects of band structure have to be considered. The former
is usually taken into account by the random-phase approximation (RPA) [15] and the latter by
sophisticated band structure calculations such as �k · �p approximation [16] or pseudopotential
calculations [17].
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(b) A full quantum mechanical approach. We now use a quantum mechanical method to
calculate the Raman scattering cross section or SPS spectrum for a single-component plasma
in a direct bandgap semiconductor such as GaAs, probed by an ultrafast laser having pulse
width tp. For simplicity, we assume that the probe pulse is a square pulse from − tp

2 to + tp
2 and

the electron elastic scattering is the dominant scattering process in the solid state system.
We start with a typical electron–photon interaction Hamiltonian which has been shown in

the equilibrium case to be [18]

H = H0 +
∑

i

[ −e

2m∗
ec

[ �pi · �A(�ri ) + �A(�ri ) · �pi ] +
e2

2m∗
ec

�A2(�ri )

]
≡ H0 + H1 + H2; (4)

where H0 is the total Hamiltonian of the system in the absence of the radiation field; e is
the charge of an electron; c is the speed of light; �p is the electron momentum;

∑
i refers to

summation over electrons; the second and third terms describe the interactions of electrons
with radiation field; �A is the vector potential of the radiation field,

�A(�ri ) ≡ 1√
V

∑
j

(
2π h̄c2

ω j

)1/2 (
ei�k j ·�ri b�k j

+ e−i�k j ·�ri b+
�k j

)
ê j; (5)

where V is the volume of the semiconductor; b�k j
, b+

�k j
are photon annihilation and creation

operators, respectively. Since the vector potential �A is a linear combination of photon creation
and annihilation operators, and the Raman scattering process involves the annihilation of an
incident photon and the creation of a scattered photon, �p · �A and �A · �p terms in equation (4)
will contribute to the scattering matrix element in the second order and �A2 terms contribute in
the first order in the perturbation-theory calculations of Raman scattering cross section.

The single-particle scattering (SPS) cross section associated with spin-density fluctuations
(SDFs) for a single-component plasma in a direct bandgap semiconductor such as GaAs,probed
by an ultrafast laser having pulse width tp and when elastic scattering is dominant,can be shown
to be given by [19–21](

d2σ

dω d�

)
SDF

= C ·
∑

�p
−n( �p)[1 − n( �p + �q)](êi × ês)

2

·
∫ ∞

−∞
dω′

∫ tp/2

−tp/2
dt

∫ tp/2−t

−tp/2−t
dt ′ ei(ω−ω′)t ′

Sp(t, ωi)S∗
p (t ′ + t, ωi)

· Im

{
1

h̄ω′ + ε �p − ε �p+�q + ih̄/τ

[
1 − ih̄

τ

〈
1

h̄ω′ + ε �p − ε �p+�q + ih̄/τ

〉
� �p

]−1}
; (6)

where C is a constant; n( �p) is the electron distribution function; êi and ês are polarization
vectors of the incident and scattered light, respectively; ωi and ωs are angular frequencies of
the incident and scattered light, respectively; ω ≡ ωi − ωs; tp is the pulse width of the probe
laser; ε �p is the electron energy at �p; τ is the electron collision time; � �p represents an average
over the solid angle in the momentum space and

Sp(t, ωi) ≡ −
{(

P2

3m∗
e

)
·

3∑
n=1

As(n)

· h̄ωi − e
i
h̄ Egn (t+tp/2){h̄ωi cos[ωi(t + tp/2)] − iEgn sin[ωi(t + tp/2)]}

(Egn − i�n)2 − (h̄ωi)2

}
;

where m∗
e is the effective mass of the electron on the conduction band; As(1) = As(2) = 1 and

As(3) = −2. �1, �2, �3 are the damping constants involved in the Raman scattering processes.



Picosecond Raman scattering studies of carrier dynamics in Inx Ga1−x As1−yNy S3337

Eg1 , Eg2 and Eg3 are the energy differences between the conduction band and the heavy-hole,
light-hole and split-off-hole bands evaluated at wavevector �k, respectively. P ≡ −i〈S|pz |Z〉
is the momentum matrix element between the conduction and valence bands at the �-point in
Kane’s notations [22].

We note that in the limit of very long probe pulse (tp → ∞) and equilibrium electron
distributions our results can be shown to reduce to expressions previously given for the Raman
scattering cross section in the equilibrium case [23].

It is very instructive to note that if we assume that the pulse width of the probe pulse
is sufficiently wide, collision effects are negligible, the electron distribution function is non-
degenerate and the term involving matrix elements—Sp—does not depend upon the electron
momentum, equation (6) can be shown to become(

d2σ

dω d�

)
SDF

∝
∫

d3 p · n( �p) · δ
[
ω − �V · �q − h̄q2

2m∗
e

]
; (7)

here, the δ-function in equation (7) ensures that both the energy and momentum are conserved.
We note that equation (7) shows that the measured Raman scattering cross section at a

given solid angle d� (which determines �q) provides direct information about the electron
distribution function in the direction of wavevector transfer �q , in agreement with the simple
classical picture.

One intriguing feature for probing carrier distributions with Raman spectroscopy is that
since Raman scattering cross section is inversely proportional to the square of the effective mass
of the carrier, it preferentially probes electron distribution even if holes are simultaneously
present. This unique feature makes the interpretation of electron distribution in Raman
scattering experiments much simpler than those of other techniques.

2.1.2. Theory of Raman scattering by lattice vibrations in semiconductors. Consider an
incident laser beam of angular frequency ωi which is scattered by a semiconductor and the
scattered radiation is analysed spectroscopically, as shown in figure 3. In general, the scattered
radiation consists of a laser beam of angular frequency ωi accompanied by weaker lines of
angular frequencies ωi ± ω. The line at an angular frequency ωi − ω is called a Stokes line,
whereas that at an angular frequency ωi + ω is usually referred to as an anti-Stokes line. The
important aspect is that the angular frequency shifts ω are independent of ωi. In this way,
this phenomenon differs from that of luminescence, in which it is the angular frequency of
the emitted light that is independent of ωi. The effect just described is called the Raman
effect. It was predicted by Smekal [24] and is implicit in the radiation theory of Kramers
and Heisenberg [25]. It was discovered experimentally by Raman [26] and by Landsberg and
Mandel’shtam [27] in 1928. It can be understood as an inelastic scattering of light in which
an internal form of motion of the scattering system is either excited or absorbed during the
process.

(a) A simple classical theory. Let us imagine that we have a crystalline lattice having an
internal mode of vibration characterized by a normal coordinate

Q = Q0 cos ωt; (8)

the electronic polarizability α is generally a function of Q and, since in general, ω 
 ωi, at
each instant we can regard Q as fixed compared with the variation of the external field �E , i.e.,
at angular frequency ωi the induced dipole moment �P is

�P = α �E = α(Q) �E . (9)
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Figure 3. A diagram showing (a) the Rayleigh scattering process; (b) the Stokes Raman scattering
process and (c) the anti-Stokes Raman scattering process.

Let α0 = α(0) be the polarizability in the absence of any excitation. We can write

α(Q) = α0 +

(
∂α

∂ Q

)
0

Q +
1

2

(
∂2α

∂ Q2

)
0

Q2 + · · ·
= α0 + α1 Q + 1

2α2 Q2 + · · · ; (10)

where
[

∂α
∂ Q

]
0 ≡ α1;

[
∂2α
∂ Q2

]
0 ≡ α2 and the derivative is to be evaluated at zero excitation field.

If we assume that �E = �E0 cos ωit , we find that

�P(t) =
(

α0 �E0 +
1

4
α2 Q2

0
�E0

)
cos ωit +

�E0

2
α1 Q0[cos(ωi + ω)t + cos(ωi − ω)t]

+ 1
8α2 Q2

0
�E0[cos(ωi + 2ω) + cos(ωi − 2ω)] + · · · . (11)

For an oscillating dipole moment, the magnetic and electric fields of emitted electromagnetic
wave are given by [28]

�B = 1

c2r

[
∂2 �P(

t − r
c

)
∂2t

]
× n̂; (12a)

and

�E = �B × n̂, (12b)

where �r is the position vector connecting the centre of dipole moment to the point of observation,
and n̂ = �r/|�r |.

Therefore, the first term in equation (11) gives rise to Rayleigh scattering; the second term
gives the anti-Stokes and Stokes first order Raman lines, respectively; the third term takes into
account the anti-Stokes and Stokes second order Raman lines, and so on. We notice that in
equation (11) the intensities of the Stokes and anti-Stokes lines are equal. This is because all
classical theories neglect the possibility of spontaneous emission.

(b) A quantum mechanical theory. In the quantum mechanical treatment of scattering of light
by lattice vibrations, we consider the total Hamiltonian of the system, including the radiation
field:

H = H ′
0 + Hel–ph + H ′; (13)

where H ′
0 includes contributions from the electronic system, lattice vibrations (or phonons)

and radiation field; Hel–ph = −eϕ(�ri) describes the interaction of electrons with phonons;
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ϕ(�ri ) is the potential due to, say, deformation potential and/or Fröhlich interactions and

H ′ =
∑

i

−e

2mec

[ �A(�ri ) · �pi + �pi · �A(�ri )
]

+
∑

i

e2

2mec2
�A2(�ri )

=
∑

i

−e

mec
[ �pi · �A(�ri )] +

∑
i

e2

2mec2
�A2(�ri ) ≡ H ′

1 + H ′
2; (14)

takes into account the electron–photon interactions, where �A(�ri ) is the vector potential of the
radiation field given by equation (5).

We notice that for a typical Raman scattering process in which ωi � ω photons do not
interact directly with phonons, but through electron–phonon interactions, i.e., the Hel–ph term
in the total Hamiltonian. Since the Raman scattering process involves the annihilation of an
incident photon and the creation of a scattered photon, �p · �A and �A · �p terms in equation (14)
will contribute to the scattering matrix element in the third order and �A2 terms contribute in
the second order in the perturbation-theory calculations of Raman scattering cross section. If
we neglect non-linear processes, then only �p · �A and �A · �p terms in equation (14) are important
and need to be considered.

From the time-dependent perturbation theory and Fermi golden rule, we obtain for the
scattering probability (which is proportional to the Raman scattering cross section) for a one-
phonon Stokes Raman process [29]

P(ωs) = 2π

h̄

∣∣∣∣∑
n,n′

〈i |H ′
1|n〉〈n|Hel–ph|n′〉〈n′|H ′

1|i〉
[h̄ωi − (En − Ei )][h̄ωi − h̄ω − (En′ − Ei)]

+
∑
n,n′

〈i |H ′
1|n〉〈n|H ′

1|n′〉〈n′|Hel–ph|i〉
[h̄ωi − (En − Ei)][h̄ωi − h̄ωs − (En′ − Ei)]

+
∑
n,n′

〈i |H ′
1|n〉〈n|Hel–ph|n′〉〈n′|H ′

1|i〉
[−h̄ωs − (En − Ei )][−h̄ωs − h̄ω − (En′ − Ei)]

+
∑
n,n′

〈i |H ′
1|n〉〈n|H ′

1|n′〉〈n′|Hel–ph|i〉
[−h̄ωs − (En − Ei)][−h̄ωi + h̄ω − (En′ − Ei )]

+
∑
n,n′

〈i |Hel–ph|n〉〈n|H ′
1|n′〉〈n′|H ′

1|i〉
[−h̄ω − (En − Ei)][−h̄ω + h̄ωi − (En′ − Ei )]

+
∑
n,n′

〈i |Hel–ph|n〉〈n|H ′
1|n′〉〈n′|H ′

1|i〉
[−h̄ω − (En − Ei)][−h̄ω − h̄ωs − (En′ − Ei)]

∣∣∣∣
2

× δ(h̄ωi − h̄ωs − h̄ω); (15)

where |i〉 is the initial state of the system and Ei is its energy; |n〉 and |n′〉 are intermediate
states with energies En and En′ , respectively.

We note that there are three processes involved in one-phonon Raman scattering: the
incident photon is annihilated; the scattered photon is emitted; and a phonon is annihilated
(or created). Since these three processes can occur in any time order in the time-dependent
perturbation-theory calculations of scattering probability, we expect that there will be six terms
or contributions to P(ωs), which is consistent with equation (15). The δ-function here ensures
that energy is conserved in the Raman scattering process.

One important advantage of probing non-equilibrium excitations with Raman
spectroscopy in semiconductors is that, since it detects a Raman signal only when excitation
photons are present, its time resolution is essentially limited by the pulse width of the excitation
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Figure 4. SPS spectrum (open circles) for an InGaAsN sample, taken with an ultrafast laser
having 1 ps pulse width and photon energy h̄ωi = 1.931 eV. The photoexcited electron-pair
density is n ∼= 1 × 1018 cm−3. The SPS spectrum is fitted by equation (6) (solid curve). The
electron distribution is assumed to be a Fermi–Dirac function. The best fitting parameter set is
Te = (700 ± 35) K, τ = (10 ± 1) fs and � = 15 meV.

laser and not by the response of the detection system. This explains why our detection system
has a time resolution of the order of a nanosecond whereas the time resolution in our Raman
experiments is typically on the scale of a picosecond.

3. Experimental results and analysis

Figure 4 show a typical SPS spectrum for an InGaAsN sample taken with photon energy
h̄ωi = 1.931 eV, an electron–hole pair density of n ∼= 1 × 1018 cm−3 and a laser pulse width
of 1 ps and at T = 300 K.

By using equation (6) and assuming that the electron distribution is a Fermi–Dirac function
with an effective electron temperature much higher than the lattice temperature, we will be able
to fit the SPS of figure 4 pretty well. This is shown in figure 4. The parameter set that best fits
the experimental results is Te = (700 ± 35) K, τ = (10 ± 1) fs and �1 = �2 = �3 = 15 meV.
The quality of the fit suggests that under our experimental conditions electron distributions
can be very well described by Fermi–Dirac functions with an effective electron temperature
much higher than the lattice temperature. We notice that the damping constants involved
in the Raman scattering processes (�) are very close to the value (13 meV) that has been
obtained from the analysis of resonance Raman profiles in the equilibrium case [30]. We notice
that alternatively a quantum mechanical Monte Carlo simulation can be performed under our
experimental conditions to obtain the non-equilibrium electron distributions and then compare
them with our experimental results; however, the simulation requires input parameters such
as electron–phonon scattering rates, effective masses of the electron and hole and the band
structure of the semiconductor. This information is not usually readily available for a new
class of semiconductors such as that investigated here. Therefore, the simulation can be in
principle performed on such a system but the results will not be very useful because of the
requirements of several input parameters.
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Figure 5. The deduced electron temperature is plotted as a function of the laser pulse width
for an InGaAsN sample. From the data, the electron energy loss rate is estimated to be
(64 ± 6) meV ps−1.

Figure 5 shows the effective electron temperature obtained in this way as a function of
the pulse width of the excitation laser, ranging from 1 to 4 ps. This plot demonstrates that
the effective electron temperature decreases from 700 to 400 K when we increase the laser
pulse width from 1 to 4 ps. Using the result of Kim and Yu [31, 32], which states that the
electron effective temperature determined with a single pulse of FWHM of δt is equal to the
temperature of the electron after cooling for an equivalent duration 0.4δt when excited by an
infinitely short pulse, we estimate that the electron cooling rate (energy loss rate) is equal to[

3
2 (700–500) kB

]
/(0.4) ps, where kB is the Boltzmann constant, or about (64 ± 6) meV ps−1.

In order to get a better insight into our experimental results we have also carried out similar
experimental measurements on a molecular-beam-epitaxy- (MBE-) grown GaAs sample. The
results are shown in figure 6. These results indicate that within our experimental uncertainty the
energy loss rate for an InGaAsN sample is the same as that for a GaAs sample, suggesting that
the electron loses its energy primarily to the GaAs-like LO phonons in an InGaAsN sample.
On the other hand, we have found that for a given laser pulse width the electron collision time
is about twice as large for a GaAs sample as for an InGaAsN sample. We attribute this finding
to the much larger defect density in the InGaAsN sample, as a result of, say, alloy fluctuations.
This interpretation is consistent with recent experimental results on this material [10, 33].

We note that for GaAs our measured energy loss rate is substantially lower than that
measured at much lower carrier densities (∼=36 meV/250 fs). We attribute this difference to
the reabsorption of hot phonons and/or screening of the polar-optical phonons [34] for electron
density n ∼= 1018 cm−3 excited in our experiments.

To obtain more information from our data, let us consider the experimental results for
1 ps laser pulse excitation. We have found that electron collision times are 22 and 10 fs
for GaAs and InGaAsN, respectively. Since the photoexcited electron–hole pair density is
very high (∼=1 × 1018 cm−3) and the defect density for the MBE-grown GaAs sample is
very low (�1013 cm−3), the 22 fs electron collision time has to primarily come from the
electron–electron scattering in GaAs. Using this information, the collision time attributed
to the defects in InGaAsN can be calculated to be τele–defect

∼= 18 fs, or the scattering
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Figure 6. The deduced electron temperature is plotted as a function of the laser pulse width for a
high-quality MBE-grown GaAs sample. The energy loss rate under similar experimental conditions
is found to be (63±6) meV ps−1, indicating that electrons lose energy primarily through electron–
LO phonon interactions in InGaAsN.

rate due to defects is �defect = 5.45 × 1013 s−1. Because the average electron velocity
in InGaAsN is given by v̄ = √

3kBTe/m∗
e = 6.74 × 105 m s−1, we obtain for InGaAsN

ndefectσdefect = �defect/v̄ = 5.45 × 1013/6.74 × 105 = 8.07 × 107 m−1, where ndefect is the
defect density and σdefect is the microscopic scattering cross section of the defect. Therefore,
our experimental results can provide information about the defect density if the microscopic
scattering cross section of the defect is known.

4. Conclusion

Non-equilibrium electron distributions and energy loss rate in an MOCVD-grown
InxGa1−x As1−yNy (x = 0.03 and y = 0.01) epilayer on GaAs substrate have been studied by
picosecond Raman spectroscopy. It is demonstrated that for electron density n ∼= 1018 cm−3

electron distributions can be described very well by Fermi–Dirac distributions with electron
temperatures substantially higher than the lattice temperature. From the measurement of
effective electron temperature as a function of the pulse width of the excitation laser, the
energy loss rate in InxGa1−x As1−yNy is estimated to be 64 meV ps−1. Within our experimental
uncertainty, the electron energy loss rate has been found to be the same in InGaAsN as in
GaAs, suggesting that the electron loses its energy primarily to the GaAs-like LO phonons in
an InGaAsN sample. The electron collision time for GaAs has been found to be substantially
larger than that for InGaAsN, indicating that the latter has much higher defect density than the
former.
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